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ABSTRACT

Coding schemes for secure and efficient communication over
noiseless public channels traditionally compress and then en-
crypt the source data. In some cases reversing the ordering
of compression and encryption would be useful, e.g., in en-
abling the efficient distribution of protected media content.
Indeed, not only is it possible to reverse the order, but under
some conditions neither security nor compression efficiency
need be sacrificed. In earlier work on this problem we have
assumed that the source data is either memoryless or has a
1-D Markov structure. Such models are poor matches for the
2-D structure of images. In this work, we use a 2-D source
model, and develop a scheme to compress encrypted images
based on LDPC codes. We present practical simulation re-
sults for compressing bi-level images. In tests, we are able
to compress an encrypted 10, 000 bit bi-level image to 4, 299
bits and successfully recover the image exactly. In previous
works, the best analogous 1-D model (operating on a raster
scanned data sequence of the same source) could only com-
press the image to 7, 710 bits.

Index Terms— Image coding, Data security, Data com-
pression, Source coding, Message passing

1. INTRODUCTION

In [1] it was shown that it is theoretically possible to compress
encrypted1 data to the entropy rate of the unencrypted source.
Since good encryption makes a source look completely ran-
dom, traditional algorithms are unable to compress encrypted
data. For this reason, traditional systems make sure to com-
press before they encrypt. Johnson et al. [1] show that the
problem of compressing encrypted data is related to source
coding with side information. It was shown that neither com-
pression performance nor security need be impacted under
some reasonable conditions. A block diagram of this system
structure is in Fig. 1.

This research was supported by the NSF under grant CCR-0325311. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

1In [1] it was shown that with a stream cipher there is no loss in either
compressibility or security. As an example, Shannon’s one time pad is a
stream cipher. We focus solely on stream ciphers here.
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Fig. 1. The source is first encrypted and then compressed. The
compressor does not have access to the key used in the encryption
step. At the decoder, decompression and decryption are performed
jointly.
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Fig. 2. A 100x100 sample binary image is on the left (10, 000 bits).
To encrypt this image, the 10, 000 bit random key in the center is
added to the unencrypted image on the left.

For an example, consider the images of Fig. 2. In this
figure, the world map image on the left and the key in center
are added via bitwise exclusive-OR to produce the encrypted
image on the right. Though several algorithms exist today for
compressing the highly structured unencrypted image on the
left, no image compression algorithms exist that can compress
the marginally random image on the right.

To understand why the image on the right is compress-
ible, note that while the unencrypted plain-text and cipher-
text are independent, compression is achieved by leveraging
the dependance between the cipher-text and the key. This de-
pendance can be understood by viewing the cipher-text as a
noisy version of the key stream. Since the key stream is avail-
able at the decoder, we can reconstruct the cipher text with
the compressed data. Reconstruction is achieved via Slepian-
Wolf coding [2, 3]. In order to develop systems that can
compress encrypted data, we develop distributed source cod-
ing schemes whose inter source correlations match the unen-
crypted source’s statistics.

To date, practical schemes for compressing encrypted data
have focused on simple source models. Johnson et al. [1]
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consider a memoryless model. In [4], a practical system for
sources with a Markov chain memory structure is described.
There is still a significant gap between these models and “real-
world” images2, which are better modeled by their natural
2-D structure. As can be seen with Fig. 2, a 1-D model is
insufficient to capture all the structure in the image.

In this work we describe how to decode using a model de-
signed to capture the underlying 2-D structure of images. The
result is more efficient compression of encrypted images. We
implement a practical scheme, based on LDPC (Low Density
Parity Check) codes (for compressing encrypted images). We
describe how to apply our scheme to binary images.

This paper is organized as follows. We describe the source
model in Section 2 and the encoder and decoder in Section 3.
We present simulation results in Section 4, and conclude in
Section 5.

2. SOURCE MODEL

In this section, we discuss our model for spatially correlated
sources. We consider binary images, wherein each pixel xi,j

takes on one of two values, i.e., xi,j ∈ {0, 1}. Images are
sampled on a rectangular grid with Nh rows and Nv columns.
In order to model this source, in prior work [4], the bits were
raster scanned and only the correlation between successive
bits in the scan were considered. This forces a 1-D model on
the data. In this paper, we consider the correlation between
each pixel and its 4 nearest neighbors; up & down, left &
right. We consider here a Markov field model for spatially
dependant sources instead of a Markov chain.

We illustrate the model by way of factor graphs [6]. Fac-
tor graphs are bipartite graphs consisting of variables (repre-
sented by circles) and constraints on those variables (repre-
sented by squares). A section of the factor graph for the 2-D
Markov field model for binary images is presented in Fig. 3.
In the graph in Fig. 3, the circles labeled xi,j represent the bits
of the image and the squares labeled fthi,j and ftvi,j represent
the dependance between pixels.

We consider the following parameterizations of the sta-
tionary distribution over the Markov field. We denote the
marginal probability on each bit as p = Pr(xi,j = 1). We
take the correlations to be symmetric for both the horizontal
and vertical dimensions. The horizontal parameters are de-
noted h0 = Pr(xi,j = 1|xi,j−1 = 0) = Pr(xi,j = 1|xi,j+1 =
0) and h1 = Pr(xi,j = 1|xi,j−1 = 1) = Pr(xi,j = 1|xi,j+1 =
1). Vertical parameters are denoted v0 = Pr(xi,j = 1|xi−1,j =
0) = Pr(xi,j = 1|xi+1,j = 0) and v1 = Pr(xi,j = 1|xi−1,j =
1) = Pr(xi,j = 1|xi+1,j = 1).

Though relatively simple, this model allows us to take into
account spatial correlations previously ignored. Though cor-

2The source coding with side information construction of [5], developed
concurrently, is related but considers an image and a noisy version of the
same image. Since here neither the key nor the cipher-text are images, their
construction does not directly apply.
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Fig. 3. A factor graph for the spatial source model considered in
this paper. The circles and squares on the grid represent the Markov
field model.

relation between a greater number of pixels exists, the near-
est neighbor Markov model captures the strongest inter-pixel
correlations. As we shall see, the result is a significant perfor-
mance improvements over the 1-D model.

3. ENCODER AND DECODER

In this section we present a practical encoder and decoder
for compressing encrypted images. We begin by assuming
that full knowledge of the source statistics (p, h0, h1, v0, v1)
is available to both encoder and decoder, and then relax this
assumption. We compress the encrypted source using a sparse
linear transformation implemented with a matrix multiplica-
tion. A detailed description of the design of the linear trans-
formation matrix (and the basis for this codec) can be found
in [7]. In particular, the design of the transform matrix is
based (with a modification discussed below) on LDPC codes [8].

The decoder operates by running belief propagation over
the factor graph [6]. We thus proceed by describing the ap-
propriate factor graph. The graphical model consists of three
components connected together; the models for the source,
the encryption, and the code. Details of the source graphical
model were described in Section 2 and shown in Fig. 3.

We form the encryption model and attach it to the source
model as shown in Fig. 4. Since we consider only stream
ciphers here, we can model the encryption process as yi,j =
xi,j ⊕ ki,j , where yi,j is the cipher-text, ki,j is the bits of the
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Fig. 4. The full graphical model for compressing encrypted spa-
tially correlated sources. The model consists of the source model on
top (abstracted here but shown in detail in Fig. 3), the encryption
model in the middle, and the code on the bottom.

key, and ⊕ indicates the exclusive-OR operation. We repre-
sent the constraint between these three variables in the graph-
ical model with a square node labeled fei,j . The circles rep-
resenting the variables xi,j , ki,j , and yi,j are all connected to
the encryption constraint fei,j .

The code model consists of a representation of the linear
transformation matrix H, the cipher bits yi,j , and the com-
pressed bits si. In [7] it was shown that good performance can
be achieved when the transformation matrix is designed as an
LDPC code. This structure is represented graphically in Fig.
4. The squares labeled fsi represent the linear transformation
H, and the results of that transformation are represented by
the circles labeled si (i.e., the compressed bits).

Decoding is achieved using the sum-product algorithm on
the factor graph of Fig. 4. The sum-product algorithm is an
inference algorithm designed to be exact on trees. Although
not exact on “loopy” graphs (such as the graph in Fig. 4), em-
pirical performance is very good. Strong performance is due
both to the code sparsity (thus its loops are long on average)
and the source being smooth (thus there is strong dependency
between adjacent bits). The algorithm iteratively updates an
estimate of the distribution for each of the variables. In the
first half of each iteration, the constraints (squares) update
their messages while in the second half of each iteration, the
variables (circles) respond by updating their messages. Mes-
sages represent the current distribution estimate.

In the sparse linear transformation a portion of the output
bits are designed to be exactly equal to the source bits. We
refer to these as “doped” bits. The doped bits are our modi-
fication of the LDPC code based design. Typically between
30% and 50% of the compressed bits are doped bits. These
bits are used in two ways. First, since these doped bits are
known unambiguously at the decoder they anchor the iterative
decoding process by catalyzing the process. Second, they pro-
vide a mechanism for estimating the statistics of the masked
source. By selecting the doped bits to come in adjacent pairs,

COMPRESSION
RATE = 0.77

DECODE
& DECRYPT

DECODE
& DECRYPT

COMPRESSION
RATE = 0.43

Fig. 5. A comparison of the compressed bits and reconstructed im-
age using the 1-D memory model from [4] and the 2-D memory
model presented here. The 1-D model compressed the encrypted
data to 7, 710, 3, 411 more bits than the 4, 299 bits used for the 2-D
model. Clearly, the 2-D model achieves greater compression.

the decoder can empirically estimate the source statistics and
use the estimates for decoding3. We demonstrate algorithm
performance below.

4. RESULTS

As a demonstration, we compress the encrypted version of the
binary image leftmost in Fig. 2. The unencrypted 100x100
binary image (10, 000 bits) is a binary map of the globe. We
use the doped bits in order to calculate the source statistics
for use in the sum-product algorithm run at the decoder. This
image is encrypted (right image in Fig. 2) by adding a pseudo-
random Bernoulli-1/2 string (center image in Fig. 2).

In this example, our method compresses the encrypted
data to 4, 299 bits, of which 2, 019 are doped bits. The de-
coder empirically estimates (p, h0, h1, v0, v1) = (0.3935, 0.0594,
0.9132, 0.0420, 0.9295) and then reconstructs the original im-
age using 81 iterations. The compressed bits and the recon-
struction are presented in Fig. 5. For comparison, we present
the 1-D memory model used in [4], where the encrypted im-
age could only be compressed to 7, 710 bits. In that simula-
tion, the image was reconstructed in 27 iterations4. The 2-D
source model allows for greater compressibility.

To see the effects of the source model on the decoding, we
present the estimates of the 2 decoders at the end of three iter-
ations in Fig. 6. The 1-D decoder estimates can be seen to ex-
hibit artifacts resulting from the north-south raster scanning.
These artifacts are the several visible up and down lines. In
contrast, such artifacts do not show up with the 2-D decoder.
Instead, the estimates seem to result in “clumped” areas, areas

3To relax the assumption that the encoder also know the source statistics,
feedback could be used by the decoder after estimating the source statis-
tics [4].

4Study of the number of iterations required for convergence versus model
structure is a part of ongoing work.
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that grow from iteration to iteration. For both decoders, after
a handful of iterations (typically under 10), these artifacts dis-
appear.

DECODER ESTIMATES

Iteration 1 Iteration 3 Iteration 5

1−D

2−D

Fig. 6. A comparison of the intermediate estimates obtained at the
decoder. On the top are the estimates obtained from the 1-D model of
[4] while on the bottom are estimates obtained from the 2-D model.
The estimates from the 1-D model exhibit raster scan artifacts. In
contrast, the 2-D model decoder exhibits a localized clumping na-
ture.

5. CONCLUSIONS & FUTURE DIRECTIONS

In this paper we have used a 2-D source model for spatially
correlated data sources. We have leveraged this algorithm to
allow us to efficiently compress encrypted images. Further,
we presented the results of compressing an encrypted binary
image without access to the source statistics at the decoder.
We showed how the 2-D source model allows greater com-
pression gains than the 1-D source model.

This work naturally suggests an extension to gray-scale
and other larger-alphabet images. A first approach is to break
an image up into a series of bit-planes where each bit-plane
represents all the bits of equal significance in the binary ex-
pansion of the pixel values. Image structure is typically highly
concentrated in the most significant bit-planes though. As a
result, little compression gain is available with this approach.
Accurate image models are necessary to be able to achieve
significant gains when compressing encrypted data.

Modeling images presents several new challenges though.
Most existing image compression algorithms are based on
transforms, e.g., the DCT (Discrete Cosine Transform) in JPEG.
Transforms aim to convert the image into a domain where it
may be represented with only a few coefficients. Using a bit-
wise stream cipher though, it becomes impossible to consider
transforms since encryption is a non-linear process. In con-
trast, image coders which use pixel domain models use highly
non-stationary predictors. For example, JPEG-LS (lossless)
compresses each pixel based on 4 of the adjacent pixels. Since

this data is unavailable when the image is encrypted, applica-
tion is not straightforward. Instead, compression of encrypted
gray-scale image will require greater use of the doped bits and
other learning techniques.

By contrast, encrypted video offers advantages unavail-
able to single encrypted images. As an example, consider 3
frames of video. At the decoder, after the first 2 frames are
decoded, the third frame can be estimated from the two pre-
vious frames with high reliability by considering “motion”
models. Since the difference between this estimate and the
actual frame is likely to be small, compression gains could
be significant. Temporal dependance (as with most popular
video coders) may offer greater compressibility then the spa-
tial dependance considered in this paper, and is a promising
area of future study.
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